SELF-ADAPTIVE PHYSICS INFORMED NEURAL NETWORKS

Anvita Bhagavathula, Maxim Beekenkamp, Philip LaDuca

INTRODUCTION

Physics Informed Neural Networks (PINNs), originally proposed by Raissi,
Perdikaris, and Karniadakis, are domain-informed neural models that can
approximate solutions to partial differential equations (PDEs) (Raissi et al.,
2019). This is achieved by capitalising on the idea that feedforward neural
networks are universal function approximators. Specifically, a custom loss
function that enforces the structure of the solution to a PDE and its boundary
condition behaviour is integrated into the model architecture to do so. The
resulting model is a data-efficient function approximator that automatically
encodes physical laws into its outputs. For our final project, we first
implemented a simple PINN that solves a one-dimensional differential equation.
We then added a self-adaptive element to this model that optimally regularizes
the boundary components of the loss function during training. Self-adaptive
PINNS are able to generate high-accuracy solutions even when provided with a
sparse set of input data. This simple but powerful architecture has the potential
to solve PDEs in fields ranging from fluid mechanics, biology, and quantum
physics and hone our understanding of complex physical phenomena.

METHODOLOGY
PROBLEM SETUP AND DATA

Our goal was to implement a PINN that would produce a solution to a
one-dimensional time-independent differential equation with specified boundary
conditions. Mathematically, our problem can be represented as follows:
u(-1)=1

u(l)=0

z€[-1,1)

v=10"%

Our goal is use our PINN to recover the structure and values of u(x) between for

YUy, —u=e*

values of x ranging from -1 to 1. The input data for our model is a
one-dimensional array of n equally spaced x values in the defined range [-1, 1]
These are known as collocation points. We implemented this model using Jax.

SIMPLE PINN: ARCHITECTURE

Each component of the differential equation (e.g. u) is defined as its own
feedforward neural network with randomly initialised weights and biases. Each
network has an input layer, output layer, and three hidden layers of size 20. We
apply a hyperbolic tangent activation to each layer. We pass our inputs through
each component network and compute a customised loss that enforces the
structure of the solution at each iteration during training. This loss is the sum of
the mean-squared error of the function residue loss and the boundary loss:

MSE, csidue = & Lltizz —u— €]

MSE.pperbound = u(1)?

MSEjouerbound = [u(=1) — 1]2

Loss = MSE,csidue + MSEupperbound + MSEiowerbound

SELF-ADAPTIVE PINN: ARCHITECTURE

We set up the architecture of the self-adaptive PINN in the same way as we did
for the simple PINN. The only modification we made was adding regularizing
lambdas to our boundary losses that were also trained. We added an L-BFGS-B

minimizer at the end of training to further optimizer network parameters
Loss = MSEresidue + AtMSEuppersound + A2MSEiouerbound

RESULTS

We trained both our simple PINN and the self-adaptive PINN for approximately
20,000 iterations, or epochs, using an Adam optimizer with a learning rate of
Se-4. We also used 40 collocation points which meant that our output was also
an array of 40 points representing the solution within our specified domain.
Below, we display each PINN’s predicted solution to our differential equation
and its boundary and residue loss over the epochs. We also display the final loss
of each model and a visual comparison of each model’s solution.

SIMPLE PINN RESULTS

Simple PINN Proposed Solution

10 — Boundary loss
14 Residue loss

Residue and Function Loss vs. Epochs

3 -0s 08

H M

4 8

£ 06
15 04

5
-100 -0.75 -050 -0.25 000 025 050 075 100 0 2500 5000 7500 10000 12500 15000 17500 20000
x Epoch

Fig 1: The simple PINN’s proposed solution and its loss over the epochs.
The final combined boundary and residue loss on our simple PINN’s solution
was 1.29¢-5.

SELF-ADAPTIVE PINN RESULTS

Self-Adaptive PINN Proposed Solution Residue and Function Loss vs. Epochs
10 —— Ay 1.873, 'A": 2.326 14 —— Lower Bound loss
: ~— Upper Bound loss
0.5 12 —— Residue loss
=z 00 1.0
3
g 05 g 08
§ -1.0 0.6
-15 0.4
-2.0 0.2
0.0
-25
-10 -0.5 0.0 0s 1.0 0 5000 10000 15000 2000
- Epoch
Optimised Lambda Values vs. Epochs
2.254 = "Ar": Lower bound penaity
—— 'Ay': Upper bound penalty
2.00

Lambda value
9 N u
8 & &

e
3
o

e
@
3

) 0 5000 10000 15000 20000
Epoch

Fig 2: The self-adaptive PINN’s proposed solution, its loss, and its lambda values over the epochs.
The final combined boundary and residue loss on our self-adaptive PINN’s
solution was 2.25¢e-6. We also observe that the loss decreases as the penalty
terms increase in value, indicating that regularizing the loss increases accuracy.

COMPARISON

While visually, the predicted solutions look similar, we see that the self-adaptive
PINN’s solution has a much lower final loss. This indicates that the adaptive
training strategy has the potential to produce higher accuracy solutions overall.

DISCUSSION

We were able to successfully implement a physics-informed neural network to
predict the solution to a one-dimensional differential equation. Some advantages
of our implementation include the fast training time due to Jax and the
high-accuracy of our predicted solutions. However, there are still several
limitations to our implementation, that are discussed further below.

e While the self-adaptive PINN was able to reduce the overall loss on the
predicted solution, it does not solve a fundamental issue with the PINN
framework: the smoothness/accuracy of the solution is limited by the
number of collocation points we use.

e Our work only solves a one-dimensional time-independent differential
equation. However, most physical phenomena are time dependent and occur
in 3D. Producing solutions for these PDEs would require modifying our
implementation in some manner. An example of time-dependent solutions
generated by a PINN for the Schrodinger equation are provided in Fig 3

|h(t,z)|

X Data (150 points)

T

°
oo
comomon

t=10.59 t=10.79 t=0.98
_5 __5 _5
= = =
0 T 0 T 0 T
-5 0 5 =5 0 5 =5 0 5
T T

= Exact === Prediction

Fig 3: PINN generated solution to Schrodinger equation over time (Raissi, et al., 2019)

FUTURE WORK

The first way we hope to expand our work is by applying self-adaptive learning
to 2D differential equations. Additionally, we would also like to explore how we
can use self-adaptive learning to optimize the number of collocation points
required to generate high-accuracy solutions. This work could have important
consequences to applying PINNS to solve data-poor problems in the sciences.

REFERENCES

e Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019).
Physics-informed Neural Networks: A deep learning framework for solving
forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378, 686-707.

e McClenny, L. (n.d.). Self-adaptive physics-informed neural networks using a
soft ... - arxiv. from https://arxiv.org/pdf/2009.04544.pdf

